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Calculation of diffusion activation energies in covalent solids:
application to vitreous silica

S L Chant and S R Elliott

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2
1EW, UK

Received 19 August 1991

Absiract. A general method is proposed for estimating activation energies of diffusion
in (amorphous) covalent solids. The parameters involved are the shear modulus, the
effective area assoclated with a bond and the size of diffusion saddle-point doorways
asspciated with the critical percolation pathway for diffusion in the structure. Calculations
of the effective force constant for difating the diffusicn doorways in a model of amorphous
silica, made using the Keating potential, are in very good agreement with the behaviour
predicted by the model, and calculated activation energies for diffusion are in good
agreement with experimental vatues for diffusion of rare gases in vitreous silica.

1. Introduction

When ions or atoms diffuse through materials, very often they have to pass through
‘doorway’ restrictions in the structure when moving from one interstitial site to an-
other. Energy may be needed in the diffusion process in order to expand these
doorways, and the magnitude of this energy is consequently very important in deter-
mining the diffusional energetics, especially in non-metals where the effect of valence
elecirons is negligible. In this paper we give a simple, general method to estimate
this doorway-expansion energy for covalent structures,

The present method deals with the static atomic structure: atoms are assumed
to occupy fixed positions in space. The method can be applied to any structure,
crystalline or amorphous, provided that the strain energy of the structure can be
calculated as a function of the atomic positions, and that the atomic positions can be
‘relaxed’ to the lowest energy state using some method.

An example of the application of this method is given using the structure of
amorphous silica, the canonical glass former. The Keating potential was used to
represent the (strain) energy of the structure in terms of covalent bond-stretching
and bending interactions. However, it shouid be stressed that the method is general,
and it will work for any potential-energy scheme.

2. The method

The doorway restrictions, or diffusion saddle points, are found by a method which
has been described previously (Chan and Elliott 1990, 1991). In brief, sets of three
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atom centres are chosen, and the position of the point lying in the plane defined by
these three centres and equidistant from the ‘surfaces’ of the three atoms (defined
say by the Van der Waals radius) is calculated. If there are no atomic surfaces nearer
to this point than the three chosen atoms, this point is a diffusion saddle point. By
inspecting all triads of atoms, ail diffusion saddle points (doorways) in the structure
should be identified.

The basic idea of the method is to relax the atomic structure while keeping a
diffusing atom at the diffusion saddle point to keep the doorway expanded. Let P
denote the saddle point, i.e. the point that is equidistant from the surfaces of, and
lying in the plane defined by, the three atoms A, B and C comprising the doorway.
The size of the doorway, 7, is defined to be the distance from P to the atom surfaces,
namely

Ty=PA-r,=PB-nr,=PC-—r, (H

where r, is the (Van der Waals) radius of atom A, etc.

Suppose an atom of size r, is to be squeezed through the doorway. It will be
assumed that it then exerts forces of magnitude F' proportional to the size difference
between it and the doorway radius

Fo(r,—ry). )

These forces act along the line from the diffusing atom to the centre of each of
the three atoms A, B, C comprising the doorway. The whole structure is then energy-
relaxed in the usual manner, using whatever method and whatever potential-energy
scheme is appropriate. At each relaxation step, the door atoms will have to take
up extra displacements proportional to the force F. Since the atoms move between
relaxation steps, the position of the saddle point P needs to be recalculated at each
step using the positions of the three door atoms. Care also needs to be taken to
ensure if a fourth, or even a fifth, atom comes into contact with the diffusing atom at
some stage during the relaxation process, it also experiences forces from the diffusing
atom. The magnitudes of these forces are also given by expression (2) above, except
that r, is replaced by the distance between the centre of the diffusing atom and the
surface of the {extra) atom in contact.

In the following, the (amorphous) structure under investigation was relaxed by
displacing atoms by distances that are proportional to the forces that they experience
(Gaskell and Tarrant 1980), including these extra doorway-related terms, In general,
if a method like the conjugate-gradient method (Steinhardt et af/ 1974) is used to
relax an atomic structure, there is no force term involved in the relaxation process.
However, one can still give extra displacements to the three door atoms that are
proportional to the force described above.

In addition to the extra energy necessary to overcome the doorway restriction,
the force required was also calculated. This force was evaluated by freezing the
configuration when the structure had been relaxed with the diffusing atom at the
doorway saddle point, and then applying the usual force equations (derived from the
Keating potential in the following section) in order to calculate the force experienced
by the door atoms.

3. Details of the calculation

The Keating potential (Keating 1966) was used throughout the following investigation,
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although the method is not restricted to this particular form of potential. The strain-
refated potential energy, V, of a structure in this representation is given by a sum
of bond-stretching and bond-bending terms which, for the case of (amorphous) silica,
can be written as

2
P T /3
(r'?. _ 1”02)2 (ru Tik 0 )
V=A E -2 __~ . 4+B Z
bonds 1"02 Si angles ’l‘02
(rjs 750 = ra? €08 B)?
+C Yy : 3)
O angles 0

In this equation, r,, is the vector along the bond between atoms a and b. Subscripts
t and i’ represent Si atoms, while j and k represent oxygen atoms. The (average)
equilibrium Si-O bond length is denoted ry, 8, is the average oxygen bond angle,
and A, B and C are force constants.

The structural model used in the following calculation was generated by Feuston
and Garofalini (1988) using molecular dynamics. The model consists of 216 ‘units’ of
$i0, in a cubic repeating box of length 21.403 A; the average Si-O bond length is
1.619 A and the mean oxygen bond angle is 154.2°. Before any calculations relating
to the energetics of the doorways can be performed, the model needs first to be
relaxed using the Keating potential (equation (3)) since this is the potential that we
shall use and the model was not generated using this potential. The equilibrium bond
length, ry, and the equilibrium oxygen bond angle, 8, in equation (3) were taken to
be equal to the mean values for the model given above,

In order to investigate the elastic behaviour of the doorways, each doorway in the
structure was dilated by a set amount, i.e. the values (r, — ;) were taken from a
fixed set of values, ranging from as little as 0.02 A to 0.2 A. The value of 0.02 & is
actually less than the thermal vibration amplitude of the atoms, being about 0.08 A
for Si atoms and 0.13 A for O atoms (Wright and Sinclair 1985), and hence does
not have any direct physical meaning. However, use of such small values can help
one get a complete picture of the behaviour of the static structure starting from zero
dilation. The relationship between the (given) amount of dilation, the force needed
for the dilation and the energy required for the dilation were studied.

In order to relate the calculated saddle-point energies to experimentally measur-
able quantities, the energies should be compared with the calculated shear modulus
(see section 4 for a discussion of this point). The shear modulus for the (isotropic)
model was calculated by rescaling the size of the repeating box of the continuous-
boundary model and then calculating the stress on the faces of the repeating box.
In each calculation, the box is scaled by the factors 1 + e, 1 and 1 — e in the three
orthogonal directions, where e is the chosen strain. The model is then relaxed with
the Keating potential before the stress is calculated. There are three different ways of
achieving this rescaling (namely different permutations of the scaling factors (1 + e),
1 and (1 - e) in the x, y and =z directions). The value of calculated shear modulus
reported below is the average of the results of these three rescalings.

4. Choice of force parameters in the Keating potential

Although the Keating potential has been widely used in the simulation of the structure
of vitreous silica, there appears to be no preferred choice for the force-constant
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parameters A, B and C in equation (3). Table 1 contains some values of these
parametess as used in previous studies. It should be noted that, as far as the static
structure (i.e. the positions of atoms) is concerned, it is only the relative ratios
between A, B and C that matter; their absolute values do not affect the static
structure. Hence, in the studies by Ching (1982) and Guttman and Rahman (1988),
for example, only the ratios between the force-constant parameters are given.

Table 1. Values of force-constant parameters in the Keating potential used in studies
of vitreous sifica. Note that the exact potential equation used may be different in each
case. The values in the table are derived by equating the corresponding energy term
with the Kealing expression and comparing first-order changes.

A (kg 577) B (kg s C (kg 5™ Comment Reference
69.75 5325 2287  fitted to vibrational spectrum  ©
75 101.25 41.25 A fitted to vibrational spectrum d
83.12 57.94 — quantum-mechanical calculation <
on Si(OH)s molecule
92.88 —_ - 13.83 quantum-mechanical calculation t
on (OH); SiOSI{OH)s molecule
— - —_ 13.72 quantum-mechanical calculation L4
on (OH); SiOSi(OH)s molecule
0.17z 0.172/3 2 h
T 1.2z 3 b i
75 55 20 . P i

* In these studies, the absolute values of the force-constant parameters were unimportant since only the
atom coordinates of the model were of interest.

b More than ore set of force-constant parameters were used in this study. The values quoted in the
table are those quoted most frequently or the most suitable.

¢ Gaskell and Tarrant (1980).

¢ Robertson and Moss (1988).

® Gibbs e al (1981).

{ Murakami and Sakka (1988).

£ Newton er af (1980).

% Ching (1982).

' Guttman and Rahman {1988).

i Present study.

In order to minimize the effect of using different force parameters, we shall
compare the calculated values of the saddie-point energies with that of the shear
modulus because the dilation of a spherical or cylindrical cavity in 2 homogeneous
medium is related to the shear modulus (sec next section). In fact, most previous
estimations of the saddle-point energies in covalent (amorphous) solids have been
made using macroscopic-based formulae involving the shear modulus.

In the presemt study, we have mainly used the representative values A =
75 kg s~%, B =55 kgs~? and C = 20 kg s~? (see table 1), although two other sets
of values have also been used and the resuits compared.

5. Relationship between the saddle-point dilation energy and the shear modulus

In previous theoretical studies of diffusion in (amorphous) solids, doorway dilation
energies have been estimated using equations relating the energy to the shear modulus
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G of the material concerned. In these estimations, the material was always treated
as a continuous medium.

The energy to dilate a spherical cavity in such a continuous medium from radius
Ty tO T is

E =8nGry(r —ry)? (4)

(Frenkel 1947). Hakim and Uhlmann (1971) suggested that the saddie-point energy
should be estimated by considering the dilation of an elliptical cavity, instead of a
spherical one; the corresponding energy is given by

E =8xGryf(efa)(r—ry)? )

where f(e¢fa) is a factor depending on the ratio of the minor axis a to the major
axis ¢ of the ellipsoid; it is unity for a sphere. Shelby (1979) has taken f{c/e)
to be 0.32. There have also been efforts to model the diffusion saddle point by
considering the dilation of a cylindrical cavity of circular cross-section in a continuous
medium. The energy to dilate a cylindrical hole of depth w from radius ry to r is
given by (Sokolnikoff 1983)

E = mGuw(r—ry)?. (6)

McElfresh and Howitt (1986) take w to be half of the average jump distance X
travelled by the diffusing species, assuming that the strain is sinusoidally distributed
between the two sites defining A, hence

E= ﬂG%(T‘-—T‘d)z. @)

6. Results

It has been found previously (Chan and Elliott 1991) that there are on average
9.09 diffusion saddle-point doorways per SiO, unit in the model of vitreous silica
constructed by Feuston and Garofalini (1938). For each doorway, relaxations were
carried out, using at first the set of force-constant parameters A = 75 kg §~2,
B =55 kgs~2 and C = 20 kg s™2, for dilations of 0.02 A, 0.05 A, 0.1 A and 0.2 A
It should be noted that the dilation of the doorway after relaxation of the structure
is not exactiy the same as that introduced during the relaxation since, at the end of
the relaxation, the dilation force is balanced by the restoring force of the structure,
and the dilation force would be zero if the dilation were to be equal to the one
introduced.

The population distributions of the force acting on each doorway atom at the
end of the relaxations for the different dilations introduced are given in figure 1. It
can be seen that the distributions are very similar in shape and are not very wide.
Comparing the distributions of the four values of dilation, it can be seen that the
forces have an approximately linear relationship with the amount of dilation. Thus
one may write

F=ke ©)
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Figure 1. Population distributions of the door-dilation force acling on each doorway
atom at the end of the relaxation; the values of dilation used (in A) are shown for each
figure.

where F is the force required for a dilation ¢ = + — ry, and k is a constant. The
average values of k = F/x for the different doorways were found to be 114.7, 113.4,
115.4 and 120.6 kg s—2 for dilations of 0.02, 0.05, 0.1 and 0.2 A, respectively. The
larger value of k for the introduced dilation of 0.2 A may be due to the need to
displace a nearby fourth atom for some doorways or it may also be due to the onset
of anharmonicity for the Keating potential at large displacements.

Since the force on each door atom associated with a dilation is proportional to
the dilation (figure 1), the energy involved in the displacement of each door atom in
dilating the doorway would be kz?/2, and so the total dilation energy should be

E = %kmz ®

if there is no fourth atom nearby which becomes associated with the diffusion door-
way. Figure 2 gives the population distribution of the saddle-point energies of the
doorways; again, the distributions are not wide. The average encrgies after relaxation
for the introduced dilations of 0.02, 0.05, 0.1 and 0.2 A were found to be 0.36, 2.32,
9.74 and 43.15 eV, respectively, which are indeed approximately proportional to the
square of the amount of dilation. If the value of the constant & is calculated from the
dilation energy E and the actual dilation « at the end of the relaxation, and assuming
that equation (9) is valid, values of k equal to 107.9, 109.6, 116.0 and 130.2 kg s~%,
respectively, are obtained. These are comparable with the values of k as obtained
from the dilation force. Again, it should be noted that the value of & increases
somewhat for the larger dilations.

The calculated values of shear modulus, &, obtained by the method described
in section 3, are given in table 2, together with the experimental literature value
(Mazurin et al 1983). It can be seen that the value of the force-constant parameter
B affects the magnitude of the calculated value of G more than does C, but the
dominant factor is expected to be the bond-stretching force constant (although the
effect of varying A was not investigated). However, the absolute magnitude of the
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Figare 2. Population distributions of the door-dilation energies of the doorways, the
~values of dilation used (in A) are shown for each fgure.

values of G calculated using these force-constant values is appreciably larger than
the experimental value. Due to the associated uncertainty in the values of the force
constants, we therefore choose in the following to discuss the results normalized to
the shear modulus calculated for the model with the same values of force constants.

Table 2. Valies of shear modulus, G, calculated for the Feuston—Garofalini model. A,
B and € are forceconstant parameters for the Keating potential.

G (GFa) A(kgs—?) B(kgs=2) C (kgs2)

86 75 55 20
105 75 75 20
89.4 75 55 40
3132 — — —

& Experimental value taken from Mazurin e of (1983).

7. Interpretation of the diffusion saddle-point energies

The dilation of a diffusion saddle-point doorway at the microscopic leve] is indeed
similar to the dilation of a cylindrical hole of circular cross-section in 4 homogeneous
medium. However, as described in section 5, knowledge of the depth, w, of the hole
is necessary before one can use the formula for the energy of dilation (equation 6).
The crucial point is then what to take as the depth of the hole.

An expression for the depth, w, can be obtained by considering the effect of
pressurizing a material at the atomic level. During pressurization, the forces act on
the surface atoms through the bonds into the bulk of the material. Hence, each bond
can be regarded as receiving the foree due to the stress on a certain effective area,
S. This effective area can be taken to be the reciprocal of the number of bonds cut
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by a plane per unit area of the plane which cuts through the material. As shown in
the appendix, the effective area , S, is given generally by the expression

2
§ e . - 10
bon (10)

where p, is the number of bonds per unit volume, and b is the average bond length,
For the case of the Feuston-Garofalini (1988) model for v-Si0,, $ = 14 AZ

For a diffusion doorway (in silica) which is surrounded by three (oxygen) atoms,
there are six associated bonds which transmit the force to the bulk of the material.
Hence, if one is to draw a parallel with the dilation of a cylindrical hole in a contin-
nous medium, it is reasonable to take a depth w such that the area of the circular,
cylindrical tube corresponding to the hole in the continuous medium has a value six
times the effective area of a bond, i.e. w should be given generally by the expression

2rrqw =65, (11)

Here, »y is the radius of the cylindrical tube and can be taken as the distance from the
diffusion saddle point to the centres of the door atoms, since the force acts through
the atom onto the bonds. For the case of the Feuston-Garofalini model for v-SiO,,
we have previously found (Chan and Elliott 1991) that this radius has the value
ry = 2.2 A. Thus, from equation (11), the average depth of the ‘cylindrical hole’
associated with the diffusion saddle-point doorway is w ~ 6.1 A for the Feuston-
Garofalini model. McElfresh and Howitt (1986) estimated this length to be 1.7 A, but
associated this with half a typical atomic jump distance; we believe our method for
estimating w to be more generally applicable and to have greater physical significance.

The clastic energy required 1o dilate a cylindrical hole in a homogeneous medium
is given by equation (6) and, substituting the relation for w, the depth of the cylin-
drical hole, from equation (11), yields

2
g = 358Gz L (1

Ty

where z is the dilation (r — ry). Note that, in equation (12), the activation energy is
independent of the depth of the hole (i.e. the atomic jump distance) and in this respect
is at variance with the McElfresh~Howitt (1986) relation (equation 7). Comparing
equation (12) with equation (9), the elastic energy involved in displacing the three
door atoms, it is apparent that in this picture the force constant, k, can be written as

2
=86 , (13)

Td

Thus a plot of k& (or equivalently F'/x, where F'is the force required to dilatc a hole
by a displacement z) versus 1/r, (the inverse of the radius of the cylindrical hole)
shouid yield a straight line with a gradient equal to 25G. _ _

Figure 3 shows such plots for three differcnt choices of force-constant parameters
in the Keating potential (table 2), for an applied dilation of 0.1 A, for all diffusion
doorways in the Feuston-Garofalini model.

It can be seen that, with the exception of a cluster of points at a value of
1/ry = 0.55 A-! which will be discussed subsequently, in general the poinis do
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Figure 3. Dilation force divided
by the magnitude of the dilation
(0.1 A) plotted versus the reciprocal
of the doorway size (distance from
the saddle point to the centre of a
door atom). The straight line has
a slope of 2S5G (see text), where
G is the calculated shear modulus
(see table 2). Different force-constant
parameters in the Keating potential
have been used in each case: (4)
A=75%kgs? B =55 kgs3,
C=20kgs 2 (p) A= 75 kgs?,
B =95k s2 C=20kgs %
(€) A=175kgs™2 B =55 kgs?,
C =40 kg s~2.
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indeed tend to fall on a straight line, as predicted. Moreover, the straight lines also
shown in figures 3(a)—(c) are nof best fits to the data points but are theoretical lines
having slopes equal to 25 (cf equation 13), where G in each case is the value of
shear modulus calculated for the particular choice of force-constant parameters (see
table 2). It can be seen that the data points in general cluster rather closely about
these straight lines, lending strong support to our model for the interpretation of
diffusion saddle-point energies.

Nevertheless it is evident from figure 3 that the vaiues of k = F'/z for some
diffusion doorways deviate systematically from the linear behaviour expected theo-
retically. These points, marked A and B in the figure, have been analysed further
to ascertain the reason for their anomalous behaviour, i.e. why are these doorways
stiffer than others with comparable door radii?

It has been found that most of these anomalous points correspond to doorways
associated with very small rings in the structure. For example, the most anomalous
point, A, correspords to the single three-membered ring (in terms of oxygen atoms)
in the structure of the Feuston-Garofalini model. The band of anomalous points
labeiled B in figure 3, lying at a value of 1/r; =~ 0.55, contains 42 points with
values of & = F'/z > 250 kg s~2. Three of these have been found to be related to
anomalously coordinated oxygen atoms (in the Feuston—Garofalini model there are 2
three-fold and 2 one-fold coordinated oxygen atoms). Of the remaining 39 anomalous
points in the band B, 29 are associated with four-membered rings in the structure
(i.e. the 3 atoms forming the doors comprise a subset of the four oxygen atoms in
the four-rings. There are a total of 48 four-rings in the model, and 114 of the total
number of 2011 doorways in the model are associated with four-rings. Therefore,
generally there is a strong correlation between anomalously stiff doorways and small
(in this case, predominantly four-membered) rings.

For the majority of (larger) rings, the stiffness of the doorways corresponds well to
the theoretical expression, equation (13). Therefore cur approach offers the prospect
of a completely general method for estimating values of effective force constants
associated with the dilation of doorways during atomic diffusion principally using
experimentally based data, namely S and G; in the absence of detailed calculations
for an appropriate structural model, ry would have to be c¢stimated, but it is very
likely to fall within a relatively narrow range of values (cf figure 3).

From our previous analysis of the void distribution of structures of v-SiO,
(Chan and Elliott 1991), we have found that (at least for the case of the Feuston—
Garofalini model) the doorway radius associated with the critical percolation pathway
is v = 2.41 A. It can be seen from figure 3 that the distribution of values of force-
constant values, k, at the inverse of the value, namely 1/ —r},’ = 0.42 A-1, is rather
narrow, ie. kp is rather well defined. Hence our method can be used to estimate
effective diffusion energies, through k&, and equation 9, since these are most likely
to be determined by those diffusion saddle-point doorways on the critical percolation
pathway,

Thus, from equation (12), and taking the experimental value of G = 31.3 GPa
(table 2), and S = 14 A? with ry = rf = 2.41 A (for the Feuston-Garofalini
model), we obtain for the diffusion activation energy

Egug = (54.6 kg s~ )22, (14)
Now

x:ra—-rp
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where r, is the radius of the diffusing atom and the percolation radius is given
by r, = T8 — 7oy Where 7, is the (Van der Waals) radius of the oxygen atom

and has a value = 1.5 A (Chan and Elliott 1991); thus, = = (r, + r,) — r§-
Table 3 gives values of diffusion activation energies estimated in this way for various
representative values of R = r, - r,. Also given in table 3 are experimental values
for the activation energies of diffusion of a variety of rare-gas atoms in vitreous silica;
agrecment between experimental and theoretical values is reasonable, considering the
uncertainties in the estimations of atomic radii, for example.

Table 3. Theoretical and experimental values for activation energies of diffusion in
vitreous silica. The sum of the atomic radii is R = r, + rox, wWhere r, is the radius of
the diffusing atom. The radius of the oxygen atom, roy, is taken as 1.5 A in obtaining
the values of R°*P. The experimental activation energies are taken from McEifresh and
Howitt (1986).

R(A) Ecev) Atom R®P(A)  EOP (eV)

25 G.03 He 25 0.29
2.6 0.12 Ne 27 0.49
2.7 0.29 H, 275 0.45
28 0.52 Ar 31 1.24
3.0 1.19

8. Conclusions

We have developed a simple, general classical model for estimating activation energies
of diffusion in (amorphous) solids in terms of three parameters, namely the shear
modulus, the effective area associated with a bond and the size of diffusion saddle-
point doorways associated with the critical percolation pathway for diffusion in the
structure. The first two parameters can be obtained experimentally whilst the last
can be estimated (and has been found for the case of vitreous silica (v-Si0,) from a
theoretical analysis of a structural model). Calculations of the effective force constant
for dilating all the saddle-point doorways in this model of v-SiO,, made using the
Keating potential, are in very good agreement with the behaviour predicted by the
model. Furthermore, theoretical estimates for the activation energy of diffusion are
in good agreement with experimental values for diffusion of rare gases in vitreous
silica.

Acknowledgments

We are grateful to Professor S H Garofalini for providing the coordinates of the
model of vitreous silica used in this study. SLC is grateful to the EC for financial
support.



1280 S L Chan and S R Elliot
Appendix.

We derive here an expression for the average area, S, associated with a bond in a
(non-crystalline) structure (equation 10 in the text).

The average area per bond can be evaluated by considering the areal number
of bonds, distributed homogenously, intersecting an arbitrary plane cutting through
the structure. The number of bonds of length b, intersecting a plane of area A, is
Abcos 8p(8), where @ is the angle between the normal to the plane and the bond
direction, and p(#4) is the density of bonds in this orientation, given by

27rsm9
p(8) = 2———p; = pysin 6

where p, is the total number of bonds per vnit volume. Thus, the total number of
bonds intersecting the plane is given by

Abpg

x/2 w2
f Abcos 8p(0)dd :/ Abp,ysinfcos 8d G = 2
0 0

Hence, the average area associated with each bond is given by

2 P

S=—.
by
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