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Calculation of diffusion activation energies in covalent solids: 
application to vitreous silica 

S L Chant and S R Elliott 
Department of Chemistry, University of Cambridge, LensBeld Road, Cambridge CB2 
IEW, UK 

Renived 19 August 1991 

Abstract. A genelal method is proposed for estimating activatiou energies of diffusion 
in (amorphous) covalent solids. lhe parameters involved are the shear modulus, rhe 
effective area associated with a bond and the size of diffusion saddle-point doonvays 
asroCaled with Ihe crilical percolation pathway for diffusion in the structure. Calculations 
of the effective fone constant for dilating the diffusion doorways in a model of amorphous 
silica. made using the Keating potential, are in very goad agreement with the behaviour 
predicted by the model, and calculated activation energies for diffusion are in good 
agreement with experimental values for diffusion of rare gases in vitreous silica. 

I. Introduction 

When ions or atoms diffuse through materials, very often they have to pass through 
‘doorway’ restrictions in the structure when moving from one interstitial site to an- 
other. Energy may be needed in the diffusion process in order to expand these 
doorways, and the magnitude of this energy is consequently very important in deter- 
mining the diffusional energetics, especially in non-metals where the effect of valence 
electrons is negligible. In this paper we give a simple, general method to estimate 
this doorwayexpansion energy for covalent structures. 

The present method deals with the static atomic structure: atoms are assumed 
to occupy k e d  positions in space. The method can be applied to any structure, 
crystalline or amorphous, provided that the strain energy of the structure can be 
calcubted as a function of the atomic positions, and that the atomic positions can be 
‘relaxed’ to the lowest energy state using some method. 

An example of the application of this method is given using the structure of 
amorphous silica, the canonical glass former. The Keating potential was used to 
represent the (strain) energy of the structure in terms of covalent bondstretching 
and bending interactions. However, it should be stressed that the method is general, 
and it will work for any potential-energy scheme. 

2. The method 

The doorway restrictions, or diffusion saddle points, are found by a method which 
has been described previously (Chan and Elliott 1990, 1991). In brief, sets of three 
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atom centres are chosen, and the position of the point lying in the plane defined by 
these three centres and equidistant from the 'surfaces' of the three atoms (defined 
say by the Van der Waals radius) is calculated. If there are no atomic surfaces nearer 
to this point than the three chosen atoms, this point is a diffusion saddle point. By 
inspecting all triads of atoms, all diffusion saddle points (doorways) in the structure 
should be identilied. 

The basic idea of the method is to relax the atomic structure while keeping a 
diffusing atom at the diffusion saddle point to keep the doorway expanded. Let P 
denote the saddle point, i.e. the point that is equidistant from the surfaces of, and 
lying in the plane defined by, the three atoms A, B and C comprising the doorway. 
The size of the doorway, rd, is defined to be the distance from P to the atom surfaces, 
namely 

rd = P A -  r, = PB -rb = PC - rc (1) 
where ra is the (Van der Waals) radius of atom A, etc. 

Suppose an atom of size r, is to be squeezed through the doorway. It will be 
assumed that it then exerts forces of magnitude F proportional to the size difference 
between it and the doorway radius 

F o( (ra - rd ) . (2) 
These forces act along the line from the diffusing atom to the centre of each of 

the three atoms A, E, C comprising the doorway. The whole structure is then energy. 
relaxed in the usual manner, using whatever method and whatever potential-energy 
scheme is appropriate. At each relaxation step, the door atoms will have to take 
up extra displacements proportional to the force F. Since the atoms move between 
relaxation steps, the position of the saddle point P needs to be recalculated at each 
step using the positions of the three door atoms. Care also needs to be taken to 
ensure if a fourth, or even a fifth, atom comes into contact with the diffusing atom at 
some stage during the relaxation process, it also experiences forces from the diffusing 
atom. The magnitudes of these forces are also given by expression (2) above, except 
that rd is replaced by the distance between the centre of the diffusing atom and the 
surface of the (extra) atom in contact. 

In the following, the (amorphous) structure under investigation was relaxed by 
displacing atoms by distances that are proportional to the forces that they experience 
(Gaskell and llrrant 1980), including these extra doorwayrelated terms. In general, 
if a method like the conjugate-gradient method (Steinhardt ef al 1974) is used to 
relax an atomic structure, there is no force term involved in the relaxation process. 
However, one can still give extra displacements to the three door atoms that are 
proportional to the force described above. 

In addition to the extra energy necessaty to overcome the doorway restriction, 
the force required was also calculated. This force was evaluated by freezing the 
configuration when the structure had been relaxed wifh the diffusing atom at the 
doorway saddle point, and then applying the usual force equations (derived from the 
Keating potential in the following section) in order to calculate the force experienced 
by the door atoms. 

3. Details of the calculation 

The Keating potential (Keating 1966) was used throughout the following investigation, 
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although the method is not restricted to this particular form of potential. The strain- 
related potential energy, V, of a structure in this representation is given by a sum 
of bond-stretching and bond-bending terms which, for the case of (amorphous) silica, 
can be written as 

I \ 2  

( r$  - ro2)’ ( p i j  * r i k  + ro2/3)  

bonds Po2 + B  c TO2 
V = A  

Si angles 

0 angles 

In this equation, rab is the vector along the bond between a t o m  a and b. Subscripts 
i and i’ represent Si atoms, while j and k represent oxygen atoms. The (average) 
equilibrium S i 4  bond length is denoted To, Bo is the average oxygen bond angle, 
and A, B and C are force constants. 

The structural model used in the following calculation was generated by Feuston 
and Garofalini (1988) using molecular dynamics. The model consists of 216 ‘units’ of 
SiO, in a cubic repeating box of length 21.403 4 the average S i 4  bond length is 
1.619 A and the mean oxygen bond angle is 1S4.Za. Before any calculations relating 
to the energetics of the doorways can be performed, the model needs first to be 
relaxed using the Keating potential (equation (3)) since this is the potential that we 
shall use and the model was not generated using this potential. The equilibrium bond 
length, ro, and the equilibrium oxygen bond angle, Bo. in equation (3) were taken to 
be equal to the mean values for the model given above. 

In order to investigate the elastic behaviour of the doonvays, each doorway in the 
structure was dilated by a set amount, i.e. the values {ra - rd)  were taken from a 
fixed set of values, ranging from as little as 0.02 8, to 0.2 A The value of 0.02 8, is 
actually less than the thermal vibration amplitude of the atoms, being about 0.08 8, 
for Si atoms and 0.13 8, for 0 atoms (Wright and Sinclair 1985), and hence does 
not have any direcf physical meaning. However, use of such small values can help 
one get a complete picture of the behaviour of the static structure starting from zero 
dilation. The relationship between the (given) amount of dilation, the force needed 
for the dilation and the energy required for the dilation were studied. 

In order to relate the calculated saddle-point energies to experimentally measur- 
able quantities, the energies should be compared with the calculated shear modulus 
(see section 4 for a discussion of this point). The shear modulus for the (isotropic) 
model was calculated by rescaling the size of the repeating box of the continuous- 
boundary model and then calculating the stress on the faces of the repeating box. 
In each calculation, the box is scaled by the factors 1 f e, 1 and 1 - e in the three 
orthogonal directions, where e is the chosen strain. The model is then relaxed with 
the Keating potential before the stress is calculated. There are three different ways of 
achieving this rescaling (namely different permutations of the scaling factors (1 + e), 
1 and (1 - e) in the z, y and z directions). The value of calculated shear modulus 
reported below is the average of the results of these three rescalings. 

4. Choice of force parameters in the Keating potential 

Although the Keating potential has been widely used in the simulation of the structure 
of vitreous silica, there appears to be no preferred choice for the forceanstant 
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parameters A, E and C in equation (3). nble 1 contains some values of these 
parameters as used in previous studies. It should be noted that, as far as the static 
structure (i.e. the positions of atoms) is concerned, it is only the relative ratios 
between A, E and C that matter; their absolute values do not affect the static 
structure. Hence, in the studies by Ching (1982) and Guttman and Rahman (1988), 
for example, only the ratios between the force-constant parameters are given. 

Table 1. b l u e s  of forceanstant parameters in the Keating patenrial used in sludies 
of vitreous silica. Note that the etact potential equation used may be different in each 
ease. The valua in the Iable are derived by equating lhe corresponding energy term 
with the Keating exp-ion and comparing firstader changes. 

S L Chan and S R Elliou 

A (kg s-l) B (kg s - ~ )  C (kg 5-l) Comment Reference 

69.75 53.25 2281 fitted to vibrational spectrum 
1.5 101.25 41.25 A Blted to vibrational spectrum 
83.12 57.94 - quantum-mechanical calculation 

92.88 - 13.83 quantum-mechanical calculation 

- - 13.72 quantum-mechanical calculation g 

0.172 0.172i3 * h 

2 1.2z *, b i 

75 55 20 b i 

* In these studies. the absolute values of the forceconslant parameters wee unimportant since only the 
atom coordinates of the model were of interest. 
More than one se1 of forceconslant parameters were used in this study. The values quoled in the 

table are those quoted most frequently or the most suitable. 
Gaskell and Bmnl (1980). 
RobeWn and Moss (1988) 
Gibbs er ul (1981). ' Mvrabmi and S a k b  (1988). 

g Newton er d (1980). 
Ching (1982). 

' Guttman and Rahman (1988). 
J Present study. 

~~ ~~ ~ ~~ 

on Si(0H)r molecule 

on (0H)s SiOSi(0H)J molecule 

on (OH)3 SiOSi(0H)s molecule 
2 

2 

In order to minimize the effect of using different force parameters, we shall 
compare the calculated values of the saddle-point energies with that of the shear 
modulus because the dilation of a spherical or cylindrical cavity in a homogeneous 
medium is related to the shear modulus (see next section). In fact, most previous 
estimations of the saddle-point energies in covalent (amorphous) solids have been 
made using macroscopicbased formulae involving the shear modulus. 

In the present study, we have mainly used the representative values A = 
75 kg s-?, B = 55 kg s-* and C = 20 kg s-? (see table l), although two other sets 
of values have also been used and the results compared. 

5. Relationship between the saddle-point dilation energy and the shear modulus 

In previous theoretical studies of diffusion in (amorphous) solids, doorway dilation 
energies have been estimated using equations relating the energy to the shear modulus 
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G of the material concerned. In these estimations, the material was always treated 
as a continuous medium. 

The energy to dilate a spherical cavity in such a continuous medium from radius 
rd to P is 

E = 8rrGrd(r - rd)' (4) 

(Frenkel 1947). Hakim and Uhlmann (1971) suggested that the saddle-point energy 
should be estimated by considering the dilation of an elliptical cavity, instead of a 
spherical one; the corresponding energy is given by 

E = 8 x G r d f ( c / a ) ( r  - P~)' (5) 

where f(c/a) is a factor depending on the ratio of the minor axis a to the major 
axis c of the ellipsoid; it is unity for a sphere. Shelby (1979) has taken f(c/a) 
to he  0.32. There have also been efforts to model the diffusion saddle point by 
considering the dilation of a cylindrical cavity of circular cross-section in a continuous 
medium. The energy to dilate a cylindrical hole of depth w from radius yd to P is 
given by (Sokolnikoff 1983) 

E =  r G w ( r - ~ ~ ) * .  (6) 

McElfresh and Howitt (1986) take w to be half of the average jump distance X 
travelled by the diffusing species, assuming that the strain is sinusoidally distributed 
between the two sites defining A, hence 

(7) 
x E = rrG-(r - yd)* .  
2 

6. Results 

It has been found previously (Chan and Elliott 1991) that there are on average 
9.09 diffusion saddle-point doorways per SiO, unit in the model of vitreous silica 
constructed by Feuston and Garofalini (1988). For each doorway, relaxations were 
carried out, using at first the set of force-constant parameters A = 75 kg s - ~ ,  
B = 55 kg s - ~  and C = 20 kg s - ~ ,  for dilations of 0.02 .&, 0.05 84 0.1 A and 0.2 8, 
It should be noted that the dilation of the doorway a€ter relaxation of the structure 
is not exactly the same as that introduced during the relaxation since, at the end of 
the relaxation, the dilation force is balanced by the restoring force of the structure, 
and the dilation force would be zero if the dilation were to be equal to the one 
introduced 

The population distributions of the force acting on each doorway atom at the 
end of the relaxations for the different dilations introduced are given in figure 1. It 
can be seen that the distributions are very similar in shape and are not very wide. 
Comparing the distributions of the four values of dilation, it can be seen that the 
forces have an approximately linear relationship with the amount of dilation. Thus 
one may write 

F = k x  (8) 
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F a r e  1. Population distributions of the doordilation force acling on each doonvay 
atom at the end of the relaralion; (he valua of dilation used (in A) are shown for each 
figure. 

where F is the force required for a dilation x = T - r.,, and k is a constant. The 
average values of k = F/x for the different doorways were found to be 114.7, 113.4, 
115.4 and 120.6 kg s - ~  for dilations of 0.02, 0.05, 0.1 and 0.2 respectively. The 
larger value of k for the introduced dilation of 0.2 A may be due to the need to 
displace a nearby fourth atom for some doorways or it may also be due to thc onset 
of anharmonicity for the Keating potential at large displacements. 

Since the force on each door atom associated with a dilation is proportional to 
the dilation (figure l), the energy involved in the displacement of each door atom in 
dilating the doorway would be lux2/2, and so the total dilation energy should be 

E = ;lux2 (9) 

if there is no fourth atom nearby which becomes associated with the diffusion door- 
way. Figure 2 gives the population distribution of the saddle-point energies of the 
doorways; again, the distributions are not wide. The average energies after relaxation 
for the introduced dilations of 0.02, 0.05, 0.1 and 0.2 8, were found to be 0.36, 2.32, 
9.74 and 43.15 ev respectively, which are indeed approximately proportional to the 
square or the amount of dilation. If the value of the constant k is calculated from the 
dilation energy E and the actual dilation x at the end of the relaxation, and assuming 
that equation (9) is valid, values of k equal to 107.9, 109.6, 116.0 and 130.2 kg s-~, 
respectively, are obtained. These are comparable with the values of k as obtained 
from the dilation force. Again, it should be noted that the value of k increases 
somewhat for the larger dilations. 

The calculated values of shear modulus, G, obtained by the method described 
in section 3, are given in table 2, together with the experimental literature value 
(Mazurin et al 1983). It can be seen that the value of the force-constant parameter 
B affects the magnitude of the calculated value of G more than does C, but the 
dominant factor is expected to be the bond-stretching force constant (although the 
effect of varying A was not investigated). However, the absolute magnitude of the 
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m 5 0.3 0 3  
c 
0 .- 

0.2 - " 0.2 s - 
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0 0  0.0 
0 2 4 0  10 20 

dilation energy (kg A2 sz) 
Figure 2. Population distributions of the door-dilation energies of the doomays; the 
values of dilation used (in A) are shown for each figure. 

values of G calculated using these forceconstant values is appreciably larger than 
the experimental value. Due to the associated uncertainty in the values of the force 
constants, we therefore choose in the following to discuss the results normalized to 
the shear modulus calculated for the model with the same values of force constants. 

Table 2. Values of shear modulus, G. calculaled for the Feuston-Garofalini model. A, 
B and C are forceconstant parameters for the Keating potential. 

G (GPa) A (kg s - ~ )  B (kg s-') C (kg s-') 

86 75 55 20 
105 75 75 20 
89.4 75 55 40 
31.3* - - - 

Experimental value Laken from Mazurin et al (1983). 

7. Interpretation of the diffusion saddle-point energies 

The dilation of a diffusion saddle-point doorway at the microscopic level is indeed 
similar to the dilation of a cylindrical hole of circular cross-section in a homogeneous 
medium. However, as described in section 5, knowledge of the depth, w, of the hole 
is necessary before one can use the formula for the energy of dilation (equation 6). 
The crucial point is then what to take as the depth of the hole. 

An expression for the depth, w, can be obtained by considering the effect of 
pressuruing a material at the atomic level. During pressurization, the forces act on 
the surface a t o m  through the bonds into the bulk of the material. Hence, each bond 
can be regarded as receiving the force due to the stress on a certain effective area, 
S. This effective area can be taken to be the reciprocal of the number of bonds cut 
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by a plane per unit area of the plane which cuts through the material. As shown in 
the appendix, the effective area , S, is given generally by the expression 

S L Chan and S R Elliou 

2 s = -  
bP0 

where po is the number of bonds per unit volume, and b is the average bond length. 
For the case of the Feuston-Garofalini (1988) model for v-SO,, S = 14 Az. 

For a diffusion doorway (in silica) which is surrounded by three (oxygen) atoms, 
there are six associated bonds which transmit the force. to the bulk of the material. 
Hence, if one is to draw a parallel with the dilation of a cylindrical hole in a contin- 
uous medium, it is reasonable to take a depth w such that the area of the circular, 
cylindrical tube corresponding to the hole in the continuous medium has a value six 
times the effective area of a bond, Le. w should be given generally by the expression 

2rrdw = 6s. (11) 

Here, rd is the radius of the cylindrical tube and can be taken as the distance from the 
diffusion saddle point to the Centres of the door atoms, since the force acts through 
the atom onto the bonds. For the case of the Feuston-Garofalini model for v-SO,, 
we have previously found (Chan and Elliott 1991) that this radius has the value 
rd = 2.2 A. Thus, from equation ( l l ) ,  the average depth of the ‘cylindrical hole’ 
associated with the diffusion saddle-point doorway is w % 6.1 8, for the Feuston- 
Garofalini model. McElfresh and Howitt (1986) estimated this length to be 1.7 4 but 
associated this with half a typical atomic jump distance; we believe our method for 
estimating w to be more generally applicable and to have greater physical significance. 

The clastic energy required to dilate a cylindrical hole in a homogeneous medium 
is given by equation (6) and, substituting the relation for w, the depth of the cylin- 
drical hole, from equation ( l l ) ,  yields 

(12) 

where 2 is the dilation (T - rd) .  Note that, in equation (12), the activation energy is 
independent of the depth of the hole (i.e. the atomic jump distance) and in this respect 
is at variance with the McElfresh-Howitt (1986) relation (equation 7). Comparing 
equation (12) with equation (9), the elastic energy involved in displacing the three 
door atoms, it is apparent that in this picture the force constan4 k, can be written as 

2SG IC=--. 
‘d 

Thus a plot of k (or equivalently F / x ,  where F is the force required to dilatc a hole 
by a displacement z )  versus l/rd (the inverse of the radius of the cylindrical hole) 
should yield a straight line with a gradient equal to 2SG. 

Figure 3 shows such plots for three different choices of force-constant parameters 
in the Keating potential (table 2). for an applied dilation of 0.1 ,& for all diffusion 
doorways in the FeustonGarofalini model. 

It can be seen that, with thc exception of a cluster of points at a value of 
l/rd m 0.55 A-’ which will be discussed subsequently, in general the points do 
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F@n 3. Dilation force divided 
by the magnitude of the dilation 
(0.1 A) plotled versus the reciprocal 
of the doorway size (distance from 
the saddle point to the centre or a 
door atom). The straight line has 
a slope of 2SG (see t a l ) ,  where 
G is the calcufated shear modulus 
(see table 2). Different force-constant 
parameters in the Keating potential 
have been used in each case: (U )  

A = 75 kg sWa,  B = 55 kg s-', 
C = 20 kg s - ~ ;  (b) A = 75 kg s-2, 
B = 75 kg C = 20 kg s-'; 
(c)  A = 75 kg s - ~ ,  B = 55 kg s-', 
C = 40 kg s-*. 



1278 S L Chan and S R Ellion 

indeed tend to fall on a straight line, as predicted. Moreover, the straight lines also 
shown in figures 3(a)-(c) are no1 best fits to the data points but are theoretical lines 
having slopes equal to 2SG (cf equation 13), where G in each case is the value of 
shear modulus calculated for the particular choice of forceanstant parameters (see 
table 2). It can be seen that the data points in general cluster rather closely about 
these straight lines, lending strong support to our model for the interpretation of 
diffusion saddle-point energies. 

Nevertheless it is evident from figure 3 that the values of k = F/x for some 
diffusion doorways deviate systematically from the linear behaviour expected theo- 
retically. These points, marked A and B in the figure, have been analysed further 
to ascertain the reason for their anomalous behaviour, i.e. why are these doorways 
stiffer than others with comparable door radii? 

It has been found that most of these anomalous points correspond to doorways 
associated with very small rings in the structure. For example, the most anomalous 
point, A, corresponds to the single three-membered ring (in terms of oxygen atoms) 
in the structure of the FeustonGarofalini model. The band of anomalous points 
labelled B in figure 3, lying at a value of 1/rd w 0.55, contains 42 points with 
values of k = F / x  2 250 kg s-’. Three of these have been found to be related to 
anomalously coordinated oxygen a t o m  (in the Feuston-Garofalini model there are 2 
three-fold and 2 one-fold coordinated oxygen atoms). Of the remaining 39 anomalous 
points in the band B, 29 are associated with four-membered rings in the structure 
(i.e. the 3 atoms forming the doors comprise a subset of the four oxygen atoms in 
the four-rings. There are a total of 48 four-rings in the model, and 114 of the total 
number of 2011 doorways in the model are associated with four-rings. Therefore, 
generally there is a strong correlation between anomalously stiff doorways and small 
(in this case, predominantly four-membered) rings. 

For the majority of (larger) rings, the stiffness of the doorways corresponds well to 
the theoretical expression, equation (13). Therefore our approach offers the prospect 
of a completely general method for estimating values of effective force constan& 
associated with the dilation of doorways during atomic diffusion principally using 
experimentally based data, namely S and G, in the absence of detailed calculations 
for an appropriate structural model, rd would have to be estimated, but it is very 
likely to fall within a relatively narrow range of values (cf figure 3). 

From our previous analysis of the void distribution of structures of v-SiO, 
(Chan and Elliott 1991), we have found that (at least for the case of the Feuston- 
Garofalini model) the doonvay radius associated with the critical percolation pathway 
is rz = 2.41 8, It can be seen from figure 3 that the distribution of values of force- 
constant values, k, at the inverse of the value, namely l/rz = 0.42 is rather 
narrow, i.e. kp is rather well defined. Hence our method can be used to estimate 
effective diffusion energies, through k, and equation 9, since these are most likely 
to be determined by those diffusion saddle-point doorways on the critical percolation 
pathway. 

Thus, from equation (E), and taking the erperimenfal value of G = 31.3 GPa 
(table 2), and S = 14 A* with r, = r: = 2.41 8, (for the Feuston-Garofalini 
model), we obtain for the diffusion activation energy 

(14) EdiA = (54.6 kg s - ~ ) z ’ .  

Now 
x = ra - rD 
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where T, is the radius of the diffusing atom and the percolation radius is given 
by rP = 6 - r,,, where roU is the (Van der mals)  radius of the oxygen atom 
and has a value = 1.5 8, (Chan and Elliott 1991); thus, 21 = ( r ,  + rex) - 6. 
Tmble 3 gives values of diffusion activation energies estimated in this way for various 
representative values of R = ra + vox. Also given in table 3 are experimental values 
for the activation energies of diffusion of a variety of rare-gas a t o m  in vitreous silica; 
agreement between experimental and theoretical values is reasonable, considering the 
uncertainties in the estimations of atomic radii, for example. 

Table 3. Theoretical and experimental values for activation energies of diffusion in 
vitreous silica. The sum of the atomic radii is R = r, + vox, where ra is lhe radius of 
the diffusing atom. The radius of the oxygen atom. rOr, is taken as 1.5 A in obtaining 
the values of Rcxp. The experimental activation energis are taken from McElfmh and 
Howitt (1986). 

R (A) EC”< (ev) Atom RCXp (A) ECxP (ev) 

2 5  0.03 He 2.5 0.29 
2.6 0.12 Ne 2 7  0.49 
2.7 0.29 H2 2 7 5  0.4.5 
2.8 0.52 Ar 3.1 1.24 
3.0 1.19 

8. Conclusions 

We have developed a simple, general classical model for estimating activation energies 
of diffusion in (amorphous) solids in terms of three parameters, namely the shear 
modulus, the effective area associated with a bond and the size of diffusion saddle- 
point doorways associated with the critical percolation pathway for diffusion in the 
structure. The first two parameters can be obtained experimentally whilst the last 
can be estimated (and has been found for the case of vitreous silica (v-30,) from a 
theoretical analysis of a structural model). Calculations of the effective force constant 
for dilating all the saddle-point doorways in this model of v-SO,, made using the 
Keating potential, are in very good agreement with the behaviour predicted by the 
model. Furthermore, theoretical estimates for the activation energy of diffusion are 
in good agreement with experimental values for diffusion of rare gases in vitreous 
silica. 
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Appendix. 

We derive here an expression for the average area, S, associated with a bond in a 
(non-crystalline) structure (equation 10 in the text). 

The average area per bond can be evaluated by considering the areal number 
of bonds, distributed homogenously, intersecting an arbitrary plane cutting through 
the structure. The number of bonds of length b, intersecting a plane of area A, is 
A6 COS 0p(0) ,  where 0 is the angle between the normal to the plane and the bond 
direction, and p( 0) is the density of bonds in this orientation, given hy 

S L Chan and S R Elliou 

where po is the total number of bonds per unit volume. Thus, the total number of 
bonds intersecting the plane is given by 

Hence, the average area associated with each bond is given by 

2 
S = - .  

bP, 
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